Design IIR Highpass Filters

This post is the fourth in a series of tutorials on IIR Butterworth filter design. So far we covered lowpass
[1], bandpass [2], and band-reject [3] filters; now we’ll design highpass filters. The general approach, as
before, has six steps:

1. Find the poles of a lowpass analog prototype filter with Q. = 1 rad/s.

2. Given the -3 dB frequency of the digital highpass filter, find the corresponding frequency of the
analog highpass filter (pre-warping).

3. Transform the analog lowpass poles to analog highpass poles.

4. Transform the poles from the s-plane to the z-plane, using the bilinear transform.

5. Add N zeros at z= 1, where N is the filter order.

6. Convert poles and zeros to polynomials with coefficients a, and by,

The detailed design procedure follows. Recall from the previous posts that F is continuous (analog)
frequency in Hz and Q is continuous radian frequency. A Matlab function hp_synth that performs the
filter synthesis is provided in the Appendix. Note that hp synth (N, fc, £s) gives the same results as
the Matlab function butter (N, 2*fc/fs, " high’) .

1. Poles of the analog lowpass prototype filter. For a Butterworth filter of order N with Q. = 1 rad/s, the
poles are given by [4, 5]:

Pak = —Sind + jcos6
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where 0 , k=1:N

Here we use a prime superscript on p to distinguish the lowpass prototype poles from the yet to be
calculated highpass poles.

2. Given the -3 dB discrete frequency f. of the digital highpass filter, find the corresponding frequency of
the analog highpass filter. As before, we’ll adjust (pre-warp) the analog frequency to take the
nonlinearity of the bilinear transform into account:

F, = %tan (%)

3. Transform the normalized analog lowpass poles to analog highpass poles. For each lowpass pole p,’,
we get the highpass pole [6, 7]:

Da = ZTTFC/p&



4. Transform the poles from the s-plane to the z-plane, using the bilinear transform [1]:
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5. Add N zeros at z= 1. The N"™-order highpass filter has N zeros at w= 0, or z= exp(j0) = 1. We can now

k=1:N

write H(z) as:

H(z) = K =1 (1)
D= =0 —p) -z —py)

In hp synth, we represent the N zeros at +1 as a vector:
g= ones(1l,N)
6. Convert poles and zeros to polynomials with coefficients a, and b,,. If we expand the numerator and

denominator of equation 1 and divide numerator and denominator by z", we get polynomials in z:

bo + blz_l + b + bNZ_N
1+az7 4+ -+ayz7™V

H(z) =K )

The Matlab code to perform the expansion is:

a= poly(p)
a= real (a)
b= poly(q)

Given that H(z) is highpass, we want H(z) to have a gain of 1 at f = f,/2, thatis, at w=m. Atw=rm,z=
exp(jmt) = -1. Referring to equation 2, we then have gain at w=m of:

%=0(_1)m * bm

Hz=-1)=1=K
%=0(_1)m * Uy

So we have:

%=0(_1)m *Am

£Vn=0(_1)m * bm

K =



Example

Here is an example function call for a 5" order highpass filter:

N= 5; % filter order
fc= 40; Hz -3 dB frequency
fs= 100; % Hz sample frequency

o

[b,al= hp synth(N, fc, fs)

b 0.0013 -0.0064 0.0128 -0.0128 0.0064 -0.0013

a = 1.0000 2.9754 3.8060 2.5453 0.8811 0.1254
To find the frequency response:

[h,f]= freqz(b,a,512,fs);
H= 20*1o0gl0 (abs (h));

The resulting response is shown in Figure 1, along with the responses for N= 2, 3, and 7. The pole-zero
plot in the z-plane is shown in Figure 2.
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Figure 1. Magnitude Response of Butterworth highpass filters for various filter orders.
f. =40 Hz and fs = 100 Hz.
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Figure 2. Pole-zero plot of 5" order Butterworth highpass filter. f. =40 Hz and f, = 100 Hz.
Zero at z= 1 is 5™ order.
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Appendix Matlab Function hp_synth.m

This program is provided as-is without any guarantees or warranty. The author is not responsible for
any damage or losses of any kind caused by the use or misuse of the program.

o

hp synth.m 1/30/18 Neil Robertson
Find the coefficients of an IIR Butterworth highpass filter using bilinear
transform.

o o oe

o

N= filter order

fc= -3 dB frequency in Hz

fs= sample frequency in Hz

b = numerator coefficients of digital filter

a = denominator coefficients of digital filter

o o oe

oe°

function [b,al= hp synth(N, fc, fs);

if fe>=fs/2;
error ('fc must be less than fs/2')

end

% I. Find poles of normalized analog lowpass filter

k= 1:N;

theta= (2*k -1)*pi/ (2*N);

p_lp= -sin(theta) + j*cos(theta); % poles of 1pf with cutoff = 1 rad/s

[

% II. transform poles for hpf

Fc= fs/pi * tan(pi*fc/fs); % continuous pre-warped frequency
pa= 2*pi*Fc./p lp; % analog hp poles

% III. Find coeffs of digital filter

[

% poles and zeros in the z plane

oe

p= (1 + pa/(2*fs))./ (1 - pa/(2*fs)); poles by bilinear transform

g= ones (1,N); $ zeros at z =1 (f= 0)

[

% convert poles and zeros to polynomial coeffs

a= poly(p); % convert poles to polynomial coeffs a
a= real(a);

b= poly(q); % convert zeros to polynomial coeffs Db
% amplitude scale factor for gain = 1 at f = fs/2 (z = -1)

m= 0:N;

K= sum((-1).”m .*a)/sum((-1).”m .*Db); % amplitude scale factor

b= K*b;



