
1

Design IIR Highpass Filters

This post is the fourth in a series of tutorials on IIR Butterworth filter design. So far we covered lowpass

[1], bandpass [2], and band-reject [3] filters; now we’ll design highpass filters. The general approach, as

before, has six steps:

1. Find the poles of a lowpass analog prototype filter with Ωc = 1 rad/s.

2. Given the -3 dB frequency of the digital highpass filter, find the corresponding frequency of the

analog highpass filter (pre-warping).

3. Transform the analog lowpass poles to analog highpass poles.

4. Transform the poles from the s-plane to the z-plane, using the bilinear transform.

5. Add N zeros at z= 1, where N is the filter order.

6. Convert poles and zeros to polynomials with coefficients an and bn.

The detailed design procedure follows. Recall from the previous posts that F is continuous (analog)

frequency in Hz and Ω is continuous radian frequency. A Matlab function hp_synth that performs the

filter synthesis is provided in the Appendix. Note that hp_synth(N,fc,fs) gives the same results as

the Matlab function butter(N,2*fc/fs,’high’).

1. Poles of the analog lowpass prototype filter. For a Butterworth filter of order N with Ωc = 1 rad/s, the

poles are given by [4, 5]:

where

Here we use a prime superscript on p to distinguish the lowpass prototype poles from the yet to be

calculated highpass poles.

2. Given the -3 dB discrete frequency fc of the digital highpass filter, find the corresponding frequency of

the analog highpass filter. As before, we’ll adjust (pre-warp) the analog frequency to take the

nonlinearity of the bilinear transform into account:

3. Transform the normalized analog lowpass poles to analog highpass poles. For each lowpass pole pa’,

we get the highpass pole [6, 7]:

2

4. Transform the poles from the s-plane to the z-plane, using the bilinear transform [1]:

5. Add N zeros at z= 1. The Nth-order highpass filter has N zeros at ω= 0, or z= exp(j0) = 1. We can now

write H(z) as:

In hp_synth, we represent the N zeros at +1 as a vector:

 q= ones(1,N)

6. Convert poles and zeros to polynomials with coefficients an and bn. If we expand the numerator and

denominator of equation 1 and divide numerator and denominator by zN, we get polynomials in z-n:

The Matlab code to perform the expansion is:
a= poly(p)

a= real(a)

b= poly(q)

Given that H(z) is highpass, we want H(z) to have a gain of 1 at f = fs/2, that is, at ω= π. At ω= π, z =

exp(jπ) = -1. Referring to equation 2, we then have gain at ω= π of:

So we have:

3

Example

Here is an example function call for a 5th order highpass filter:

N= 5; % filter order

fc= 40; % Hz -3 dB frequency

fs= 100; % Hz sample frequency

[b,a]= hp_synth(N,fc,fs)

b = 0.0013 -0.0064 0.0128 -0.0128 0.0064 -0.0013

a = 1.0000 2.9754 3.8060 2.5453 0.8811 0.1254

To find the frequency response:

[h,f]= freqz(b,a,512,fs);

H= 20*log10(abs(h));

The resulting response is shown in Figure 1, along with the responses for N= 2, 3, and 7. The pole-zero

plot in the z-plane is shown in Figure 2.

Figure 1. Magnitude Response of Butterworth highpass filters for various filter orders.

 fc = 40 Hz and fs = 100 Hz.

0 5 10 15 20 25 30 35 40 45 50

-80

-70

-60

-50

-40

-30

-20

-10

0

Hz

dB N= 2 N= 3 N= 5 N= 7

4

Figure 2. Pole-zero plot of 5th order Butterworth highpass filter. fc = 40 Hz and fs = 100 Hz.

 Zero at z= 1 is 5th order.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
ag f= 0f= fs/2

5

References

1. Robertson, Neil , “Design IIR Butterworth Filters Using 12 Lines of Code”, Dec 2017

https://www.dsprelated.com/showarticle/1119.php

2. Robertson, Neil , “Design IIR Bandpass Filters”, Jan 2017

https://www.dsprelated.com/showarticle/1128.php

3. Robertson, Neil , “Design IIR Band-Reject Filters”, Jan 2017

https://www.dsprelated.com/showarticle/1131.php

4. Williams, Arthur B. and Taylor, Fred J., Electronic Filter Design Handbook, 3rd Ed., McGraw-Hill, 1995,

section 2.3

5. Analog Devices Mini Tutorial MT-224, 2012 http://www.analog.com/media/en/training-

seminars/tutorials/MT-224.pdf

6. Blinchikoff, Herman J., and Zverev,Anatol I., Filtering in the Time and Frequency Domains, Wiley,

1976, section 4.3.

7. Nagendra Krishnapura , “E4215: Analog Filter Synthesis and Design Frequency Transformation”, 4

Mar. 2003 http://www.ee.iitm.ac.in/~nagendra/E4215/2003/handouts/freq_transformation.pdf

Neil Robertson February, 2018

https://www.dsprelated.com/showarticle/1119.php
https://www.dsprelated.com/showarticle/1128.php
https://www.dsprelated.com/showarticle/1131.php
http://www.analog.com/media/en/training-seminars/tutorials/MT-224.pdf
http://www.analog.com/media/en/training-seminars/tutorials/MT-224.pdf
http://www.ee.iitm.ac.in/~nagendra/E4215/2003/handouts/freq_transformation.pdf

6

Appendix Matlab Function hp_synth.m

This program is provided as-is without any guarantees or warranty. The author is not responsible for

any damage or losses of any kind caused by the use or misuse of the program.

% hp_synth.m 1/30/18 Neil Robertson

% Find the coefficients of an IIR Butterworth highpass filter using bilinear

% transform.

%

% N= filter order

% fc= -3 dB frequency in Hz

% fs= sample frequency in Hz

% b = numerator coefficients of digital filter

% a = denominator coefficients of digital filter

function [b,a]= hp_synth(N,fc,fs);

if fc>=fs/2;

 error('fc must be less than fs/2')

end

% I. Find poles of normalized analog lowpass filter

k= 1:N;

theta= (2*k -1)*pi/(2*N);

p_lp= -sin(theta) + j*cos(theta); % poles of lpf with cutoff = 1 rad/s

% II. transform poles for hpf

Fc= fs/pi * tan(pi*fc/fs); % continuous pre-warped frequency

pa= 2*pi*Fc./p_lp; % analog hp poles

% III. Find coeffs of digital filter

% poles and zeros in the z plane

p= (1 + pa/(2*fs))./(1 - pa/(2*fs)); % poles by bilinear transform

q= ones(1,N); % zeros at z = 1 (f= 0)

% convert poles and zeros to polynomial coeffs

a= poly(p); % convert poles to polynomial coeffs a

a= real(a);

b= poly(q); % convert zeros to polynomial coeffs b

% amplitude scale factor for gain = 1 at f = fs/2 (z = -1)

m= 0:N;

K= sum((-1).^m .*a)/sum((-1).^m .*b); % amplitude scale factor

b= K*b;

